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Abstract—The Merkle-Hellman cryptosystem’s security relies 

on how hard it is to solve the knapsack problem. However, we can 

attack this by solving a similar problem, the modular subset sum, 

using lattice basis reduction techniques, such as LLL, and its 

CJLOSS optimization. The resulting attack works suprisingly well 

on the Merkle-Hellman cryptosystem 
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I.  INTRODUCTION 

In this information age, the need for communication and data 
transmission is increasing. However, as this need grows, so does 
the number of malicious actors in the digital world who want to 
steal, alter, or damage the data we send. To prevent this, 
encryption techniques are needed. 

Encryption is a cryptographic technique that aims to protect 
information so that it cannot be read or understood by 
unauthorized individuals. One widely known cryptographic 
technique is the Merkle-Hellman Cryptosystem, which is based 
on a Knapsack problem known to be NP-hard. 

This paper will discuss in detail how lattice reduction can be 
used to attack the Merkle-Hellman Cryptosystem. The paper 
will discuss the techniques used in this attack, covering the 
Lenstra-Lenstra-Lovász algorithm to the Lagarias and Odlyzko 
(LO) approach and CJLOSS optimization. 

II. THEORETICAL BACKGROUND 

A. Lattice 

A lattice in 𝑛-dimensional Euclidean space is a set of vectors 
described by a basis 𝐵, which contains 𝑚 linearly independent 
basis vectors. The number 𝑚 is called the rank of the lattice. 
When the space’s dimension and the rank of the lattice is the 
same, e.g. 𝑚 = 𝑛, we call the lattice a full rank lattice. For the 
purpose of this paper, we will only consider full rank lattices. 

More precisely, let 𝑣1, 𝑣2, … , 𝑣𝑛 be linearly independent 
vectors in 𝑛-dimensional Euclidean space. Then, the lattice 
generated by basis 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛 } is the set of all linear 
combinations of these vectors with integer coefficients: 

𝐿 = {∑𝑚𝑖𝑣𝑖

𝑛

𝑖=1

 | 𝑚𝑖 ∈ ℤ} 

where ℤ denotes the set of integers. 

This set 𝐿 forms a discrete subgroup of 𝑅𝑛, which means that 
the points in L are separated from each other by a minimum 
distance (called the minimum distance of the lattice), and there 
is no accumulation of points in any region of space. 

 

Fig. 1. A lattice [1] 

It is important to note that a lattice’s basis is not unique. In 
the figure above, we can see that two different bases can form 
the same lattice. We can tell whether a basis 𝐵 forms a lattice 𝐿 
by observing its fundamental paralleliped [1]. A fundamental 
paralleliped of a basis 𝐵 with vectors 𝑏𝑖 is defined as: 

𝑃 = {∑𝑚𝑖𝑏𝑖

𝑛

𝑖=1

 | 0 ≤ 𝑚𝑖 < 1}  

 

Fig. 2. A fundamental parallelped in a lattice [1] 
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If there exists a non-zero point of the lattice 𝐿 in the 
fundamental paralleliped 𝑃, then the basis 𝐵 will not form 𝐿. In 
other words, the basis 𝐵 forms the lattice 𝐿 if and only if its 
fundamental paralleliped 𝑃 does not contain any non-zero points 
of 𝐿. 

Furthermore, we define the deterimnant of a lattice 𝐿 as the 
volume of its fundamental paralleliped 𝑃, which can be 
calculated as: 

det(𝐿) = |det (𝐵)| 

Lastly, we have one more important property of lattices, 
which is the successive minima. The 𝑖th sucessive minimum of 
the lattice 𝐿 with rank 𝑛, is the smallest 𝑟 such there are exacly 
𝑖 linearly independent vectors of length at most 𝑟 in 𝐿. For our 
purposes, we will mostly use the first sucessive minimum, which 
is the length of the shortest vector in 𝐿. Finding this vector is 
quite hard, and is often referred to as the Shortest Vector 
Problem, or SVP. 

B. Gram-Schmidt Process 

The Gram-Schmidt process is a method used in linear 
algebra to transform a set of linearly independent vectors into an 
orthonormal set of vectors. The process is named after the 
mathematicians Jørgen Pedersen Gram and Erhard Schmidt, 
who independently developed it. 

Given a set of vectors {v₁, v₂, ..., vₙ} in an inner product 
space, the Gram-Schmidt process constructs a new set of vectors 
{u₁, u₂, ..., uₙ} that are orthogonal to each other and have unit 
length. The process involves the following steps: 

Initialize: Let u₁ be the first vector in the new set, which is 
simply the normalized version of v₁. This means u₁ = v₁ / ||v₁||, 
where ||v₁|| represents the Euclidean norm or length of v₁. 

Orthogonalization: For each subsequent vector vᵢ, where i 
ranges from 2 to n, compute the orthogonal projection of vᵢ onto 
the subspace spanned by the previously obtained vectors u₁, u₂, 
..., uᵢ₋₁. This projection is computed as follows: 

proj(vᵢ) = vᵢ - (⟨vᵢ, u₁⟩ * u₁) - (⟨vᵢ, u₂⟩ * u₂) - ... - (⟨vᵢ, uᵢ₋₁⟩ * uᵢ₋₁), 

where ⟨⋅, ⋅⟩ represents the inner product of two vectors. This 
projection represents the component of vᵢ that lies in the 
subspace spanned by u₁, u₂, ..., uᵢ₋₁. 

Normalization: Once the orthogonal projection of vᵢ is 
obtained, we normalize it by dividing it by its Euclidean norm. 
This gives us the corresponding vector uᵢ in the new set: 

uᵢ = proj(vᵢ) / ||proj(vᵢ)|| 

Repeat the orthogonalization and normalization process for 
each subsequent vector vᵢ, until all n vectors have been 
processed. 

At the end of the process, the resulting set of vectors {u₁, u₂, 
..., uₙ} is an orthonormal set, meaning that each vector is 
orthogonal to every other vector and has unit length. These 
vectors span the same subspace as the original vectors {v₁, v₂, 
..., vₙ}, but they provide a more convenient basis for 
computations involving inner products and orthogonal 

projections. This process will help us in finding a better basis for 
a lattice, using the Lemstra-Lenstra Lovász algorithm. 

C. Lenstra-Lenstra-Lovász Algorithm  

The LLL algorithm, short for Lenstra-Lenstra-Lovász 
algorithm, is a lattice reduction algorithm developed by Arjen 
Lenstra, Hendrik Lenstra, and László Lovász. 

The main goal of the LLL algorithm is to transform a given 
basis into a new basis with the following desirable properties: 

1. Short vectors: The transformed basis should have short 
vectors, meaning that the lengths of the vectors are 
minimized. This property is useful in various 
applications, such as cryptanalysis, where shorter 
vectors can lead to more efficient attacks on 
cryptographic systems based on lattices. 

2. Nearly orthogonal vectors: The transformed basis 
should have vectors that are nearly orthogonal to each 
other. This property helps to simplify computations 
involving the lattice. 

The LLL algorithm achieves these properties through a 
series of steps that involve swapping vectors, scaling vectors, 
and adding multiples of one vector to another. The algorithm 
takes as input a basis for a lattice and performs the following 
steps: 

1. Initialization: Start with a basis of vectors for the 
lattice. 

2. Gram-Schmidt orthogonalization: Apply the Gram-
Schmidt orthogonalization process to the basis 
vectors to obtain an orthogonal basis. 

3. Size reduction: Iterate through the orthogonal basis 
vectors and perform size reduction operations. In 
each iteration, compare the size of the vector with a 
certain threshold. If the size of the vector exceeds 
the threshold, perform a series of operations to 
reduce the size of the vector. These operations 
include swapping vectors, scaling vectors, and 
adding multiples of one vector to another. The 
operations are carefully designed to maintain the 
orthogonality of the basis while reducing the vector 
sizes. 

4. Lovász condition: After performing size reduction, 
check a condition known as the Lovász condition. 
This condition ensures that the basis is sufficiently 
orthogonal. If the condition is not satisfied, repeat 
the size reduction process. 

5. Output: Once the Lovász condition is satisfied, the 
resulting basis is considered a reduced basis for the 
lattice. 

Specifically, we define a basis to be δ-LLL reduced as the 
following. Let δ ∈ (1/4, 1). A basis 𝐵 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛} and 
𝐺 = {𝑏1

∗, 𝑏2
∗, … , 𝑏𝑛

∗} its Gram-Schmidt orthogonalized basis is δ-
LLL-reduced if:  
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1. |⟨bi, bj
∗⟩/ ⟨b𝑗

∗, bj
∗⟩| = |𝜇𝑖,𝑗  |  ≤

1

2
  for all 𝑖 > 𝑗 (size-

reduced)  

2. (δ − μ𝑖+1,𝑖
2 )|𝑏𝑖

∗|2 ≤ |𝑏𝑖+1
∗ |2 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 

(Lovász condition) 

The following is the pseudocode for the LLL algorithm [2]: 

 

D. LO Algorithm and CJLOSS Optimization  

The subset sum problem is defined as follows. Given 
positive integers 𝑎1, 𝑎2, … , 𝑎𝑛 and a target sum 𝑠, find 
𝑒1, 𝑒2, … , 𝑒𝑛 where 𝑒𝑖 ∈ {0, 1} such that: 

∑𝑒𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑠 

 Lagarias and Odlyzko proposed an algorithm (LO algorithm) 
to solve subset sum problems [3], using lattice reductions and 
the LLL algorithm. The method almost always solve the 
problem in polynomial time if the density of the subset sum 
problem is 𝑑 < 0.6463, where the density 𝑑 is defined by: 

𝑑 = 𝑛/(log2(max 𝑎𝑖)) 

 This can be solved by modelling the problem as vectors in a 
𝑛 + 1 dimension euclidian space, by encoding 𝑒𝑖 as a short 
vector in the formed lattice. Essentially, the LO algorithm forms 
a basis matrix to be fed to the LLL algorithm as a SVP problem. 
The basis matrix generated by the LO algorithm [3] is as follows: 

𝐵 =

(

 
 

1 0 ⋯ 0 𝑎1
0 1 𝑎2
⋮ ⋱ ⋮
0 1 𝑎𝑛
0 0 … 0 𝑠 )

 
 

 

 The lattice basis above works because the linear combination  
𝑡 = (𝑒1, 𝑒2, … , 𝑒𝑛, −1) will give the short vector 𝑥 =
(𝑒1, 𝑒2, … , 𝑒𝑛 , 0). This matrix is further optimized by CJLOSS 
[4], and forms the following basis: 

𝐵 =

(

 
 
 

1 0 ⋯ 0 𝑁𝑎1
0 1 𝑁𝑎2
⋮ ⋱ ⋮
0 1 𝑁𝑎𝑛
1

2

1

2
…

1

2
𝑁𝑠 )

 
 
 

 

 where 𝑁 > √𝑛 is an integer. The CJLOSS optimization [3] 
will make the algorithm work for 𝑑 < 0.9408.  

E. Public Key Cryptosystem 

A public key cryptosystem, also known as asymmetric 
cryptography, is a cryptographic system that uses a pair of 
mathematically related keys for secure communication. It was 
introduced to address the key distribution problem present in 
symmetric cryptography, where both the sender and receiver 
share the same secret key. 

In a public key cryptosystem, each participant has a pair of 
keys: a public key and a private key. The public key is made 
available to others, while the private key is kept secret. The keys 
are mathematically linked in such a way that data encrypted with 
the public key can only be decrypted using the corresponding 
private key, and vice versa. 

The basic operations in a public key cryptosystem are 
encryption and decryption. To send an encrypted message, the 
sender uses the recipient's public key to encrypt the data. Once 
encrypted, only the recipient possessing the corresponding 
private key can decrypt and read the message. 

Public key cryptosystems usually rely on some 
computationally hard problems to prevent attackers to calculate 
the private key given the public key. For instance, RSA uses the 
factorization problem, El Gamal uses the discrete logarithm 
problem, and elliptic curve cryptosystems uses the elliptic curve 
discrete logarithm problem. 

F. Merkle-Hellman Cryptosystem  

The Merkle-Hellman cryptosystem is a public-key 
encryption scheme proposed by Ralph Merkle and Martin 
Hellman in 1978. It was one of the first practical examples of a 
public-key cryptosystem, predating the widely known RSA 
algorithm. 

The Merkle-Hellman cryptosystem is based on the problem 
of solving the knapsack problem or a subset sum, which is 
known to be computationally difficult. The security of the 
system relies on the difficulty of solving this problem. The key 
generation works as follows: 

1. Selecting the Superincreasing Sequence. Choose a set of 
positive integers 𝑊 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} to form the 
superincreasing sequence. These integers should follow 
the property that each subsequent element is greater than 

the sum of all the previous elements, that is ∑ 𝑎𝑖
𝑘−1
𝑖=1 <

𝑎𝑘. 

2. Selecting the Modulus. Choose a random number 𝑞 such 
that ∑𝑎𝑖 < 𝑞. 

3. Choose a random number 𝑟 that satisfies gcd(𝑟, 𝑞) = 1. 

4. Calculate the sequence 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) where 𝑏𝑖 =
𝑎𝑖 ∗ 𝑟 (𝑚𝑜𝑑 𝑞). 

Now, we have 𝐵 as the public key and (𝑊, 𝑞, 𝑟) as the 
private key. Encryption works by encoding the message into bits 
𝑀 = 𝑚1𝑚2…𝑚𝑛 and the ciphertext 𝐶 =  ∑𝑚𝑖𝑏𝑖  𝑚𝑜𝑑 𝑞. In 
other words, 𝐶 is a subset sum of 𝐵. To decrypt the ciphertext 
we do the following. 

1. Calculate 𝐷 = 𝐶 ∗ 𝑟−1 𝑚𝑜𝑑 𝑞 
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2. Find 𝑚1, 𝑚2, … ,𝑚𝑛 such that 𝐷 = ∑𝑎𝑖𝑚𝑖  𝑚𝑜𝑑 𝑞. 
This can easily be done because 𝑊 is a superincreasing 
set. We keep track of 𝑑, initially set to 𝐷. For each 𝑎𝑖 
sorted from the largest, we check if 𝑑 ≥ 𝑎𝑖. If it is, then 
we set 𝑚𝑖 to 1, and deduct 𝑑 by 𝑎𝑖, and if not, we set 𝑚𝑖 
to 0. Constructing 𝑀 = 𝑚1𝑚2…𝑚𝑛 will give us the 
original message. 

III. ATTACKING THE CRYPTOSYSTEM 

A. Solving the modular subset sum problem 

The modular subset sum problem can then be defined as 
follows. Given positive integers 𝑎1, 𝑎2, … , 𝑎𝑛 a target sum 𝑠,  
and a modulo 𝑚, find 𝑒1, 𝑒2, … , 𝑒𝑛 where 𝑒𝑖 ∈ {0, 1} such that: 

∑𝑒𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑠 (𝑚𝑜𝑑 𝑚) 

We can also state the problem as: 

∑𝑒𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑠 + 𝑘𝑚 

 for some integer 𝑘. 

This enables us do model basis matrix as follows: 

𝐵 =

(

 
 
 
 

1 0 ⋯ 0 0 𝑁𝑎1
0 1 0 𝑁𝑎2
⋮ ⋱ ⋮ ⋮
0 1 0 𝑁𝑎𝑛
0 0 ⋯ 0 0 𝑁𝑚
1

2

1

2
…

1

2

1

2
𝑁𝑠 )

 
 
 
 

 

The lattice basis above works because the linear combination 
𝑡 = (𝑒1, 𝑒2, … , 𝑒𝑛, 𝑘, −1) will give the short vector 𝑥 = (𝑒1 −
1

2
, 𝑒2 −

1

2
, … , 𝑒𝑛 −

1

2
, −

1

2
, 0).  

B. Attacking the Merkle-Hellman Cryptosystem 

 The template All margins, column widths, line spaces, and 
text fonts are prescribed; please do not alter them. We see that 
the Merkle-Hellman Cryptosystem is modeled after the modular 
subset sum problem. We can directly feed the public key as the 
subset sum weights and the modulus dari the subset sum 
modulus, with the ciphertext as the target sum. We construct the 
matrix as follows: 

𝐵 =

(

 
 
 
 

1 0 ⋯ 0 0 𝑁𝑏1
0 1 0 𝑁𝑏2
⋮ ⋱ ⋮ ⋮
0 1 0 𝑁𝑏𝑛
0 0 ⋯ 0 0 𝑁𝑚
1

2

1

2
…

1

2

1

2
𝑁𝑐 )

 
 
 
 

 

 

C. Attack Implementation 

The attack will be done on a Merkle-Hellman cipher with the 
following parameters: 

class Merkle: 

    def __init__(self, n: int = 8): 

        self.q = getPrime(128) 

        self.n = n 

        self.w = [] 

        for i in range(self.n): 

            while True: 

                cur = getRandomInteger(i+20) 

                if cur > sum(self.w): 

                    self.w.append(cur) 

                    break 

        self.r = getRandomInteger(127) 

        self.b = [i * self.r for i in self.w] 

 The weights will be based on a set of superincreasing random 
integers generated by the Pycryptodome library. Encryption by 
default will be done on blocks of 8 bits, or in other words, one 
byte at a time. 

 The attack will be done using the following parameters: 

def __init__(self, pub_key: List[int], modulus: int): 

        self.b = pub_key 

        self.q = modulus 

        self.M = [] 

        size = len(self.b) + 2 

        for i in range(size): 

            arr = [0 for _ in range(size)] 

            if i == size - 1: 

                arr = [1/2 for _ in range(size)] 

            arr[i] = 1 

            if i < len(self.b): 

                arr[-1] = self.b[i] 

            else: 

                arr[-1] = self.q 

            self.M.append(arr) 

        self.M[-2][-2] = 0 

        self.size = size 

 

 Then, the attack will be formulated using sagemath as 
follows: 

def decrypt_one(self, ciphertext: bytes): 

        self.M[-1][-1] = bytes_to_long(ciphertext) 

        M = Matrix(QQ, self.size) 

        for i in range(self.size): 
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            for j in range(self.size): 

                M[i, j] = self.M[i][j] 

        L = M.LLL() 

        pt = "" 

        if L[0, -1] == 0: 

            for c in L[0][:-2]: 

                if c > 0: 

                    pt += "0" 

                else: 

                    pt += "1" 

            pt = long_to_bytes(int(pt, 2)) 

        else: 

            print("Fail") 

            pt = b"-" 

        return pt 

 Decrypting one block at a time will be done using the basis 
matrix discussed before. To confirm whether we get a valid 
result, we will check whether the last element of the first basis 
vector is zero. Then, we can simply reconstruct the originial 
message bit by bit from the shortest vector. We can then 
reconstruct the entire message as follows: 

def decrypt(self, ciphertext: List[bytes]): 

        plain = b"" 

        for c in ciphertext: 

            plain += self.decrypt_one(c) 

        print(f"Derived Plaintext: {plain}") 

 

IV. ATTACK ANALYSIS 

We will run attacks using the aforementions parameters on 
different messages. Here are a few of the decryption results: 

============================= 

Original plaintext:b'hello' 

Attack starts 

Derived Plaintext: b'hello' 

Attack done 

Time elapsed: 2.899646759033203ms 

============================= 

============================= 

Original plaintext:b'abcdef' 

Attack starts 

Derived Plaintext: b'abcdef' 

Attack done 

Time elapsed: 3.864288330078125ms 

============================= 

============================= 

Original 
plaintext:b'abcdefabcdefabcdefabcdefabcdefabcdefabcdefa
bcdefabcdefabcdef' 

Attack starts 

Derived Plaintext: 
b'abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcde
fabcdef' 

Attack done 

Time elapsed: 99.57599639892578ms 

============================= 

============================= 

Original 
plaintext:b'KessokuBandKessokuBandKessokuBandKessokuBan
dKessokuBandKessokuBandKessokuBandKessokuBandKessokuBan
dKessokuBand' 

Attack starts 

Derived Plaintext: 
b'KessokuBandKessokuBandKessokuBandKessokuBandKessokuBa
ndKessokuBandKessokuBandKessokuBandKessokuBandKessokuBa
nd' 

Attack done 

Time elapsed: 409.9609851837158ms 

============================= 

 

We see that all of the attack succeeds in reasonable time, 
taking about 0.6 ms per byte. The attacks works suprisingly well 
to solve even large messages with large parameters. Taking a 
peek at one of the LLL process, we see the following resulting 
matrix: 

Resulting LLL matrix: 

[               1/2               -1/2               -
1/2               -1/2                1/2                1/2                
1/2                1/2                1/2                  0] 

[                 1                 -1                 -
2                  3                 -9                  3                  
0                  2                  1                  0] 

[               -10                 -4                  2                  
0                  1                 -2                  2                  
3                  2                  0] 

[                 7                 -5                  4                 
-3                  0                 -4                 -
7                  1                 -2                  0] 

[              -1/2               -7/2                1/2               
-3/2                3/2               15/2              -
21/2                1/2               -3/2                  0] 

[              -5/2               -5/2              -
19/2               -9/2                7/2              -
23/2              -13/2                7/2               -
3/2                  0] 

[                -1                 -2                 -
6                 14                  7                 -
4                  3                  0                  1                  
0] 

[                -1                  9                  1                  
2                 -3                 -2                 -
4                 15                  7                  0] 
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[  -1648829317193/2  -13710030277743/2  -
20478290311891/2  -41895338808319/2 -104093393641325/2 -
222824957447827/2 -428714440334029/2 -876895396930191/2 
1558093358272611/2   -203738363027759] 

[      125726705293      1045418660596      1561512731589      
3194607750316      7937340323319     16990871926862     
32690378278742     66865119388549   -118807897480264   -
980212223058028] 

 We see that the first vector is indeed the shortest vector, 

which has the same length as 𝑣 = (𝑒1 −
1

2
, 𝑒2 −

1

2
, … , 𝑒𝑛 −

1

2
, −

1

2
, 0). This is the same as what we previously discussed on 

the attack on Merkle-Hellman. 

V. CONCLUSION 

 The LLL attack with the CJLOSS optimitzation works 
suprisingly well to solve modular subset sum problem. By 
modelling the modular subset sum problem as a shortest vector 
problem, we are able to apply the LLL attack which runs mostly 
in polynomial time to solve the modular subset sum problem, 
which is the fundamental problem from which the Merkle-
Hellman Cryptosystem relies on. 

 Moving forward, the attack can be expanded by 
implementing it other knapsack based cryptosystems, using 
similar methods to transform the fundamental cryptosystem’s 
security into a problem solvable by LLL, such as SVP or CVP. 

CODE REPOSITORY 

The implementation of the aforemention attack can be 
accessed at Github using the following link: 
https://github.com/dxt99/LLL-Modular-Subset-Sum  
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