
Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

Lattice Reduction Attack on the Merkle-Hellman

Cryptosystem

Frederik Imanuel Louis - 13520163

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13520163@std.stei.itb.ac.id

Abstract—The Merkle-Hellman cryptosystem’s security relies

on how hard it is to solve the knapsack problem. However, we can

attack this by solving a similar problem, the modular subset sum,

using lattice basis reduction techniques, such as LLL, and its

CJLOSS optimization. The resulting attack works suprisingly well

on the Merkle-Hellman cryptosystem

Keywords—Lattice, Basis, LLL, Shortest Vector Problem

I. INTRODUCTION

In this information age, the need for communication and data
transmission is increasing. However, as this need grows, so does
the number of malicious actors in the digital world who want to
steal, alter, or damage the data we send. To prevent this,
encryption techniques are needed.

Encryption is a cryptographic technique that aims to protect
information so that it cannot be read or understood by
unauthorized individuals. One widely known cryptographic
technique is the Merkle-Hellman Cryptosystem, which is based
on a Knapsack problem known to be NP-hard.

This paper will discuss in detail how lattice reduction can be
used to attack the Merkle-Hellman Cryptosystem. The paper
will discuss the techniques used in this attack, covering the
Lenstra-Lenstra-Lovász algorithm to the Lagarias and Odlyzko
(LO) approach and CJLOSS optimization.

II. THEORETICAL BACKGROUND

A. Lattice

A lattice in 𝑛-dimensional Euclidean space is a set of vectors
described by a basis 𝐵, which contains 𝑚 linearly independent
basis vectors. The number 𝑚 is called the rank of the lattice.
When the space’s dimension and the rank of the lattice is the
same, e.g. 𝑚 = 𝑛, we call the lattice a full rank lattice. For the
purpose of this paper, we will only consider full rank lattices.

More precisely, let 𝑣1, 𝑣2, … , 𝑣𝑛 be linearly independent
vectors in 𝑛-dimensional Euclidean space. Then, the lattice
generated by basis 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛 } is the set of all linear
combinations of these vectors with integer coefficients:

𝐿 = {∑𝑚𝑖𝑣𝑖

𝑛

𝑖=1

 | 𝑚𝑖 ∈ ℤ}

where ℤ denotes the set of integers.

This set 𝐿 forms a discrete subgroup of 𝑅𝑛, which means that
the points in L are separated from each other by a minimum
distance (called the minimum distance of the lattice), and there
is no accumulation of points in any region of space.

Fig. 1. A lattice [1]

It is important to note that a lattice’s basis is not unique. In
the figure above, we can see that two different bases can form
the same lattice. We can tell whether a basis 𝐵 forms a lattice 𝐿
by observing its fundamental paralleliped [1]. A fundamental
paralleliped of a basis 𝐵 with vectors 𝑏𝑖 is defined as:

𝑃 = {∑𝑚𝑖𝑏𝑖

𝑛

𝑖=1

 | 0 ≤ 𝑚𝑖 < 1}

Fig. 2. A fundamental parallelped in a lattice [1]

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

If there exists a non-zero point of the lattice 𝐿 in the
fundamental paralleliped 𝑃, then the basis 𝐵 will not form 𝐿. In
other words, the basis 𝐵 forms the lattice 𝐿 if and only if its
fundamental paralleliped 𝑃 does not contain any non-zero points
of 𝐿.

Furthermore, we define the deterimnant of a lattice 𝐿 as the
volume of its fundamental paralleliped 𝑃, which can be
calculated as:

det(𝐿) = |det (𝐵)|

Lastly, we have one more important property of lattices,
which is the successive minima. The 𝑖th sucessive minimum of
the lattice 𝐿 with rank 𝑛, is the smallest 𝑟 such there are exacly
𝑖 linearly independent vectors of length at most 𝑟 in 𝐿. For our
purposes, we will mostly use the first sucessive minimum, which
is the length of the shortest vector in 𝐿. Finding this vector is
quite hard, and is often referred to as the Shortest Vector
Problem, or SVP.

B. Gram-Schmidt Process

The Gram-Schmidt process is a method used in linear
algebra to transform a set of linearly independent vectors into an
orthonormal set of vectors. The process is named after the
mathematicians Jørgen Pedersen Gram and Erhard Schmidt,
who independently developed it.

Given a set of vectors {v₁, v₂, ..., vₙ} in an inner product
space, the Gram-Schmidt process constructs a new set of vectors
{u₁, u₂, ..., uₙ} that are orthogonal to each other and have unit
length. The process involves the following steps:

Initialize: Let u₁ be the first vector in the new set, which is
simply the normalized version of v₁. This means u₁ = v₁ / ||v₁||,
where ||v₁|| represents the Euclidean norm or length of v₁.

Orthogonalization: For each subsequent vector vᵢ, where i
ranges from 2 to n, compute the orthogonal projection of vᵢ onto
the subspace spanned by the previously obtained vectors u₁, u₂,
..., uᵢ₋₁. This projection is computed as follows:

proj(vᵢ) = vᵢ - (⟨vᵢ, u₁⟩ * u₁) - (⟨vᵢ, u₂⟩ * u₂) - ... - (⟨vᵢ, uᵢ₋₁⟩ * uᵢ₋₁),

where ⟨⋅, ⋅⟩ represents the inner product of two vectors. This
projection represents the component of vᵢ that lies in the
subspace spanned by u₁, u₂, ..., uᵢ₋₁.

Normalization: Once the orthogonal projection of vᵢ is
obtained, we normalize it by dividing it by its Euclidean norm.
This gives us the corresponding vector uᵢ in the new set:

uᵢ = proj(vᵢ) / ||proj(vᵢ)||

Repeat the orthogonalization and normalization process for
each subsequent vector vᵢ, until all n vectors have been
processed.

At the end of the process, the resulting set of vectors {u₁, u₂,
..., uₙ} is an orthonormal set, meaning that each vector is
orthogonal to every other vector and has unit length. These
vectors span the same subspace as the original vectors {v₁, v₂,
..., vₙ}, but they provide a more convenient basis for
computations involving inner products and orthogonal

projections. This process will help us in finding a better basis for
a lattice, using the Lemstra-Lenstra Lovász algorithm.

C. Lenstra-Lenstra-Lovász Algorithm

The LLL algorithm, short for Lenstra-Lenstra-Lovász
algorithm, is a lattice reduction algorithm developed by Arjen
Lenstra, Hendrik Lenstra, and László Lovász.

The main goal of the LLL algorithm is to transform a given
basis into a new basis with the following desirable properties:

1. Short vectors: The transformed basis should have short
vectors, meaning that the lengths of the vectors are
minimized. This property is useful in various
applications, such as cryptanalysis, where shorter
vectors can lead to more efficient attacks on
cryptographic systems based on lattices.

2. Nearly orthogonal vectors: The transformed basis
should have vectors that are nearly orthogonal to each
other. This property helps to simplify computations
involving the lattice.

The LLL algorithm achieves these properties through a
series of steps that involve swapping vectors, scaling vectors,
and adding multiples of one vector to another. The algorithm
takes as input a basis for a lattice and performs the following
steps:

1. Initialization: Start with a basis of vectors for the
lattice.

2. Gram-Schmidt orthogonalization: Apply the Gram-
Schmidt orthogonalization process to the basis
vectors to obtain an orthogonal basis.

3. Size reduction: Iterate through the orthogonal basis
vectors and perform size reduction operations. In
each iteration, compare the size of the vector with a
certain threshold. If the size of the vector exceeds
the threshold, perform a series of operations to
reduce the size of the vector. These operations
include swapping vectors, scaling vectors, and
adding multiples of one vector to another. The
operations are carefully designed to maintain the
orthogonality of the basis while reducing the vector
sizes.

4. Lovász condition: After performing size reduction,
check a condition known as the Lovász condition.
This condition ensures that the basis is sufficiently
orthogonal. If the condition is not satisfied, repeat
the size reduction process.

5. Output: Once the Lovász condition is satisfied, the
resulting basis is considered a reduced basis for the
lattice.

Specifically, we define a basis to be δ-LLL reduced as the
following. Let δ ∈ (1/4, 1). A basis 𝐵 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛} and
𝐺 = {𝑏1

∗, 𝑏2
∗, … , 𝑏𝑛

∗} its Gram-Schmidt orthogonalized basis is δ-
LLL-reduced if:

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

1. |⟨bi, bj
∗⟩/ ⟨b𝑗

∗, bj
∗⟩| = |𝜇𝑖,𝑗 | ≤

1

2
 for all 𝑖 > 𝑗 (size-

reduced)

2. (δ − μ𝑖+1,𝑖
2)|𝑏𝑖

∗|2 ≤ |𝑏𝑖+1
∗ |2 for all 1 ≤ 𝑖 ≤ 𝑛 − 1

(Lovász condition)

The following is the pseudocode for the LLL algorithm [2]:

D. LO Algorithm and CJLOSS Optimization

The subset sum problem is defined as follows. Given
positive integers 𝑎1, 𝑎2, … , 𝑎𝑛 and a target sum 𝑠, find
𝑒1, 𝑒2, … , 𝑒𝑛 where 𝑒𝑖 ∈ {0, 1} such that:

∑𝑒𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑠

 Lagarias and Odlyzko proposed an algorithm (LO algorithm)
to solve subset sum problems [3], using lattice reductions and
the LLL algorithm. The method almost always solve the
problem in polynomial time if the density of the subset sum
problem is 𝑑 < 0.6463, where the density 𝑑 is defined by:

𝑑 = 𝑛/(log2(max 𝑎𝑖))

 This can be solved by modelling the problem as vectors in a
𝑛 + 1 dimension euclidian space, by encoding 𝑒𝑖 as a short
vector in the formed lattice. Essentially, the LO algorithm forms
a basis matrix to be fed to the LLL algorithm as a SVP problem.
The basis matrix generated by the LO algorithm [3] is as follows:

𝐵 =

(

1 0 ⋯ 0 𝑎1
0 1 𝑎2
⋮ ⋱ ⋮
0 1 𝑎𝑛
0 0 … 0 𝑠)

 The lattice basis above works because the linear combination
𝑡 = (𝑒1, 𝑒2, … , 𝑒𝑛, −1) will give the short vector 𝑥 =
(𝑒1, 𝑒2, … , 𝑒𝑛 , 0). This matrix is further optimized by CJLOSS
[4], and forms the following basis:

𝐵 =

(

1 0 ⋯ 0 𝑁𝑎1
0 1 𝑁𝑎2
⋮ ⋱ ⋮
0 1 𝑁𝑎𝑛
1

2

1

2
…

1

2
𝑁𝑠)

 where 𝑁 > √𝑛 is an integer. The CJLOSS optimization [3]
will make the algorithm work for 𝑑 < 0.9408.

E. Public Key Cryptosystem

A public key cryptosystem, also known as asymmetric
cryptography, is a cryptographic system that uses a pair of
mathematically related keys for secure communication. It was
introduced to address the key distribution problem present in
symmetric cryptography, where both the sender and receiver
share the same secret key.

In a public key cryptosystem, each participant has a pair of
keys: a public key and a private key. The public key is made
available to others, while the private key is kept secret. The keys
are mathematically linked in such a way that data encrypted with
the public key can only be decrypted using the corresponding
private key, and vice versa.

The basic operations in a public key cryptosystem are
encryption and decryption. To send an encrypted message, the
sender uses the recipient's public key to encrypt the data. Once
encrypted, only the recipient possessing the corresponding
private key can decrypt and read the message.

Public key cryptosystems usually rely on some
computationally hard problems to prevent attackers to calculate
the private key given the public key. For instance, RSA uses the
factorization problem, El Gamal uses the discrete logarithm
problem, and elliptic curve cryptosystems uses the elliptic curve
discrete logarithm problem.

F. Merkle-Hellman Cryptosystem

The Merkle-Hellman cryptosystem is a public-key
encryption scheme proposed by Ralph Merkle and Martin
Hellman in 1978. It was one of the first practical examples of a
public-key cryptosystem, predating the widely known RSA
algorithm.

The Merkle-Hellman cryptosystem is based on the problem
of solving the knapsack problem or a subset sum, which is
known to be computationally difficult. The security of the
system relies on the difficulty of solving this problem. The key
generation works as follows:

1. Selecting the Superincreasing Sequence. Choose a set of
positive integers 𝑊 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} to form the
superincreasing sequence. These integers should follow
the property that each subsequent element is greater than

the sum of all the previous elements, that is ∑ 𝑎𝑖
𝑘−1
𝑖=1 <

𝑎𝑘.

2. Selecting the Modulus. Choose a random number 𝑞 such
that ∑𝑎𝑖 < 𝑞.

3. Choose a random number 𝑟 that satisfies gcd(𝑟, 𝑞) = 1.

4. Calculate the sequence 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) where 𝑏𝑖 =
𝑎𝑖 ∗ 𝑟 (𝑚𝑜𝑑 𝑞).

Now, we have 𝐵 as the public key and (𝑊, 𝑞, 𝑟) as the
private key. Encryption works by encoding the message into bits
𝑀 = 𝑚1𝑚2…𝑚𝑛 and the ciphertext 𝐶 = ∑𝑚𝑖𝑏𝑖 𝑚𝑜𝑑 𝑞. In
other words, 𝐶 is a subset sum of 𝐵. To decrypt the ciphertext
we do the following.

1. Calculate 𝐷 = 𝐶 ∗ 𝑟−1 𝑚𝑜𝑑 𝑞

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

2. Find 𝑚1, 𝑚2, … ,𝑚𝑛 such that 𝐷 = ∑𝑎𝑖𝑚𝑖 𝑚𝑜𝑑 𝑞.
This can easily be done because 𝑊 is a superincreasing
set. We keep track of 𝑑, initially set to 𝐷. For each 𝑎𝑖
sorted from the largest, we check if 𝑑 ≥ 𝑎𝑖. If it is, then
we set 𝑚𝑖 to 1, and deduct 𝑑 by 𝑎𝑖, and if not, we set 𝑚𝑖
to 0. Constructing 𝑀 = 𝑚1𝑚2…𝑚𝑛 will give us the
original message.

III. ATTACKING THE CRYPTOSYSTEM

A. Solving the modular subset sum problem

The modular subset sum problem can then be defined as
follows. Given positive integers 𝑎1, 𝑎2, … , 𝑎𝑛 a target sum 𝑠,
and a modulo 𝑚, find 𝑒1, 𝑒2, … , 𝑒𝑛 where 𝑒𝑖 ∈ {0, 1} such that:

∑𝑒𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑠 (𝑚𝑜𝑑 𝑚)

We can also state the problem as:

∑𝑒𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑠 + 𝑘𝑚

 for some integer 𝑘.

This enables us do model basis matrix as follows:

𝐵 =

(

1 0 ⋯ 0 0 𝑁𝑎1
0 1 0 𝑁𝑎2
⋮ ⋱ ⋮ ⋮
0 1 0 𝑁𝑎𝑛
0 0 ⋯ 0 0 𝑁𝑚
1

2

1

2
…

1

2

1

2
𝑁𝑠)

The lattice basis above works because the linear combination
𝑡 = (𝑒1, 𝑒2, … , 𝑒𝑛, 𝑘, −1) will give the short vector 𝑥 = (𝑒1 −
1

2
, 𝑒2 −

1

2
, … , 𝑒𝑛 −

1

2
, −

1

2
, 0).

B. Attacking the Merkle-Hellman Cryptosystem

 The template All margins, column widths, line spaces, and
text fonts are prescribed; please do not alter them. We see that
the Merkle-Hellman Cryptosystem is modeled after the modular
subset sum problem. We can directly feed the public key as the
subset sum weights and the modulus dari the subset sum
modulus, with the ciphertext as the target sum. We construct the
matrix as follows:

𝐵 =

(

1 0 ⋯ 0 0 𝑁𝑏1
0 1 0 𝑁𝑏2
⋮ ⋱ ⋮ ⋮
0 1 0 𝑁𝑏𝑛
0 0 ⋯ 0 0 𝑁𝑚
1

2

1

2
…

1

2

1

2
𝑁𝑐)

C. Attack Implementation

The attack will be done on a Merkle-Hellman cipher with the
following parameters:

class Merkle:

 def __init__(self, n: int = 8):

 self.q = getPrime(128)

 self.n = n

 self.w = []

 for i in range(self.n):

 while True:

 cur = getRandomInteger(i+20)

 if cur > sum(self.w):

 self.w.append(cur)

 break

 self.r = getRandomInteger(127)

 self.b = [i * self.r for i in self.w]

 The weights will be based on a set of superincreasing random
integers generated by the Pycryptodome library. Encryption by
default will be done on blocks of 8 bits, or in other words, one
byte at a time.

 The attack will be done using the following parameters:

def __init__(self, pub_key: List[int], modulus: int):

 self.b = pub_key

 self.q = modulus

 self.M = []

 size = len(self.b) + 2

 for i in range(size):

 arr = [0 for _ in range(size)]

 if i == size - 1:

 arr = [1/2 for _ in range(size)]

 arr[i] = 1

 if i < len(self.b):

 arr[-1] = self.b[i]

 else:

 arr[-1] = self.q

 self.M.append(arr)

 self.M[-2][-2] = 0

 self.size = size

 Then, the attack will be formulated using sagemath as
follows:

def decrypt_one(self, ciphertext: bytes):

 self.M[-1][-1] = bytes_to_long(ciphertext)

 M = Matrix(QQ, self.size)

 for i in range(self.size):

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

 for j in range(self.size):

 M[i, j] = self.M[i][j]

 L = M.LLL()

 pt = ""

 if L[0, -1] == 0:

 for c in L[0][:-2]:

 if c > 0:

 pt += "0"

 else:

 pt += "1"

 pt = long_to_bytes(int(pt, 2))

 else:

 print("Fail")

 pt = b"-"

 return pt

 Decrypting one block at a time will be done using the basis
matrix discussed before. To confirm whether we get a valid
result, we will check whether the last element of the first basis
vector is zero. Then, we can simply reconstruct the originial
message bit by bit from the shortest vector. We can then
reconstruct the entire message as follows:

def decrypt(self, ciphertext: List[bytes]):

 plain = b""

 for c in ciphertext:

 plain += self.decrypt_one(c)

 print(f"Derived Plaintext: {plain}")

IV. ATTACK ANALYSIS

We will run attacks using the aforementions parameters on
different messages. Here are a few of the decryption results:

=============================

Original plaintext:b'hello'

Attack starts

Derived Plaintext: b'hello'

Attack done

Time elapsed: 2.899646759033203ms

=============================

=============================

Original plaintext:b'abcdef'

Attack starts

Derived Plaintext: b'abcdef'

Attack done

Time elapsed: 3.864288330078125ms

=============================

=============================

Original
plaintext:b'abcdefabcdefabcdefabcdefabcdefabcdefabcdefa
bcdefabcdefabcdef'

Attack starts

Derived Plaintext:
b'abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcde
fabcdef'

Attack done

Time elapsed: 99.57599639892578ms

=============================

=============================

Original
plaintext:b'KessokuBandKessokuBandKessokuBandKessokuBan
dKessokuBandKessokuBandKessokuBandKessokuBandKessokuBan
dKessokuBand'

Attack starts

Derived Plaintext:
b'KessokuBandKessokuBandKessokuBandKessokuBandKessokuBa
ndKessokuBandKessokuBandKessokuBandKessokuBandKessokuBa
nd'

Attack done

Time elapsed: 409.9609851837158ms

=============================

We see that all of the attack succeeds in reasonable time,
taking about 0.6 ms per byte. The attacks works suprisingly well
to solve even large messages with large parameters. Taking a
peek at one of the LLL process, we see the following resulting
matrix:

Resulting LLL matrix:

[1/2 -1/2 -
1/2 -1/2 1/2 1/2
1/2 1/2 1/2 0]

[1 -1 -
2 3 -9 3
0 2 1 0]

[-10 -4 2
0 1 -2 2
3 2 0]

[7 -5 4
-3 0 -4 -
7 1 -2 0]

[-1/2 -7/2 1/2
-3/2 3/2 15/2 -
21/2 1/2 -3/2 0]

[-5/2 -5/2 -
19/2 -9/2 7/2 -
23/2 -13/2 7/2 -
3/2 0]

[-1 -2 -
6 14 7 -
4 3 0 1
0]

[-1 9 1
2 -3 -2 -
4 15 7 0]

Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023

[-1648829317193/2 -13710030277743/2 -
20478290311891/2 -41895338808319/2 -104093393641325/2 -
222824957447827/2 -428714440334029/2 -876895396930191/2
1558093358272611/2 -203738363027759]

[125726705293 1045418660596 1561512731589
3194607750316 7937340323319 16990871926862
32690378278742 66865119388549 -118807897480264 -
980212223058028]

 We see that the first vector is indeed the shortest vector,

which has the same length as 𝑣 = (𝑒1 −
1

2
, 𝑒2 −

1

2
, … , 𝑒𝑛 −

1

2
, −

1

2
, 0). This is the same as what we previously discussed on

the attack on Merkle-Hellman.

V. CONCLUSION

 The LLL attack with the CJLOSS optimitzation works
suprisingly well to solve modular subset sum problem. By
modelling the modular subset sum problem as a shortest vector
problem, we are able to apply the LLL attack which runs mostly
in polynomial time to solve the modular subset sum problem,
which is the fundamental problem from which the Merkle-
Hellman Cryptosystem relies on.

 Moving forward, the attack can be expanded by
implementing it other knapsack based cryptosystems, using
similar methods to transform the fundamental cryptosystem’s
security into a problem solvable by LLL, such as SVP or CVP.

CODE REPOSITORY

The implementation of the aforemention attack can be
accessed at Github using the following link:
https://github.com/dxt99/LLL-Modular-Subset-Sum

ACKNOWLEDGMENT

First of all, I thank God for giving me the chance to research
and write about this fascinating topic. I also thank the lecturer of
IF4020 Kriptografi, Dr. Ir. Rinaldi Munir, M.T., that have
encouranged and guided us to write this paper.

STATEMENT

 I, Frederik Imanuel Louis, hereby declare that this paper is
written originally by myself, and is not a translation, a copy, or
plagirized from any sources

Yogyakarta, May 21 2023

 .

Frederik Imanuel Louis

REFERENCES

[1] Surin and Cohney, A Gentle Introduction for Lattice-Based
Cryptanalysis, Available: https://eprint.iacr.org/2023/032.pdf

[2] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients.

[3] Izu, Kogure, Koshiba, and Shimoyama. Low Density Attack Revisited,
Available: https://eprint.iacr.org/2007/066.pdf

[4] Munir, Algoritma Kriptografi Knapsack dari Kuliah IF4020 Kriptografi,
Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-
2023/21-Algoritma-kripto-knapsack-2020.pdf

https://github.com/dxt99/LLL-Modular-Subset-Sum
https://eprint.iacr.org/2023/032.pdf
https://eprint.iacr.org/2007/066.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-2023/21-Algoritma-kripto-knapsack-2020.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2022-2023/21-Algoritma-kripto-knapsack-2020.pdf

